Holiday load forecast based on combination of multi-scale features
نویسندگان
چکیده
منابع مشابه
Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملStream-Based Electricity Load Forecast
Sensors distributed all around electrical-power distribution networks produce streams of data at high-speed. From a data mining perspective, this sensor network problem is characterized by a large number of variables (sensors), producing a continuous flow of data, in a dynamic non-stationary environment. Companies make decisions to buy or sell energy based on load profiles and forecast. We prop...
متن کاملApplication of Combination Forecast Model in the Medium and Long term Power Load Forecast
The gain of SVC depends upon the type of reactive power load for optimum performance. As the load and input wind power conditions are variable, the gain setting of SVC needs to be adjusted or tuned. In this paper, an ANN based approach has been used to tune the gained parameters of the SVC controller over a wide range of load characteristics. The multi-layer feedforward ANN tool with the error ...
متن کاملMulti-scale Phase-based Local Features
Local feature methods suitable for image feature based object recognition and for the estimation of motion and structure are composed of two steps, namely the ‘where’ and ‘what’ steps. The ‘where’ step (e.g., interest point detector) must select image points that are robustly localizable under common image deformations and whose neighborhoods are relatively informative. The ‘what’ step (e.g., l...
متن کاملHierarchical Fiber Clustering Based on Multi-Scale Neuroanatomical Features
DTI fiber tractography inspires unprecedented understanding of brain neural connectivity by allowing in vivo probing of the brain white-matter microstructures. However, tractography algorithms often output hundreds of thousands of fibers and thus render the fiber analysis a challenging task. By partitioning a huge number of fibers into dozens of bundles, fiber clustering algorithms make the tas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1757/1/012114